Set No. 1

I B.Tech I Semester Supplementary Examinations, Sept - 2014 MATHEMATICAL METHODS
(Common to Civil Engineering, Electrical \& Electronics Engineering, Computer Science \& Engineering, Electronics \& Instrumentation Engineering, Aeronautical Engineering, Bio-Technology and Automobile Engineering)
Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find rank of matrix using Normal form $A=\left[\begin{array}{cccc}8 & 1 & 3 & 6 \\ 0 & 3 & 2 & 2 \\ -8 & -1 & -3 & 4\end{array}\right]$
(b) Are the following equations consistent, if so solve them $2 x+3 y-z-2 w=2,4 x+5 y+3 z=7$ $\mathrm{x}+\mathrm{y}+2 \mathrm{z}+\mathrm{w}=5$
2. Verify Cayley - Hamilton theorem and find A^{-1} if $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1\end{array}\right]$
3. Reduce the quadratic form $3 x^{2}+3 y^{2}+3 z^{2}+4 x y+8 y z+8 x z$ to canonical form by Diagonalization. Also find its nature, index rank and signature?
4. (a) Find out square root of 25 given $\mathrm{x}_{0}=2, \mathrm{x}_{1}=7$ using Bisection method
(b) Solve the equation $x^{3}+2 x^{2}+10 x=20$ by iteration method $[8+7]$
5. (a) Use gauss forward interpolation formula to estimate $f(32)$, given $f(25)=$ $0.2707, \mathrm{f}(30)=0.3027, \mathrm{f}(35)=0.3386, \mathrm{f}(40)=0.3794$.
(b) Find the interpolating polynomial $\mathrm{f}(\mathrm{x})$ from the table given below.

x	0	1	4	5
$f(x)$	4	3	24	39

6. (a) The population of a certain town (as obtained from census data) is shown in the following table:

Year	1951	1961	1971	1981	1991
Population(in thousand)	19.96	39.65	58.81	77.21	94.61

Estimate the rate of growth of the population in the year 1981
(b) The following table gives the value of $\mathrm{f}(\mathrm{x})$ at equal intervals of x .

x	0	0.5	1.0	1.5	2.0
y	0.399	0.352	0.242	0.129	0.054

Evaluate $\int_{0}^{2} f(x) d x$ using Simpsons $1 / 3$ and Simpsons $3 / 8$ rule. $\quad[8+7]$
7. (a) Solve $y^{1}=x^{2} y-1, y(0)=1$ by Taylor series method and hence find y at $\mathrm{x}=0.1$
(b) Solve $\mathrm{y}^{1}=\mathrm{y}, \mathrm{y}(0)=1$ by Picard's method and compare the solution with exact solution.
8. (a) Fit a curve of the type $\mathrm{y}=\mathrm{ae}^{b x}$ to the data by the method of least squares

x	0	1	2	3	4	5	6	7	8
y	20	30	52	77	135	211	326	550	1052

(b) Fit a least square parabola $\mathrm{y}=\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2}$ to the following data

x	0.0	0.2	0.4	0.7	0.9	1
y	1.016	0.768	0.648	0.401	0.272	0.193

Set No. 2

I B.Tech I Semester Supplementary Examinations, Sept - 2014 MATHEMATICAL METHODS
(Common to Civil Engineering, Electrical \& Electronics Engineering, Computer Science \& Engineering, Electronics \& Instrumentation Engineering, Aeronautical Engineering, Bio-Technology and Automobile Engineering)
Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find rank using Normal form $A=\left[\begin{array}{cccc}-1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 0 & 1\end{array}\right]$
(b) Solve by Gauss elimination method $2 \mathrm{x}_{1}+\mathrm{x}_{2}+2 \mathrm{x}_{3}+\mathrm{x}_{4}=6, \mathrm{x}_{1}-\mathrm{x}_{2}+\mathrm{x}_{3}+2 \mathrm{x}_{4}=6$, $4 x_{1}+3 x_{2}+3 x_{3}-3 x_{4}=1,2 x_{1}+2 x_{2}-x_{3}+x_{4}=10$
2. (a) Find Eigen Vectors of $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$
(b) The Eigen vectors corresponding to two different eigen values are linearly independent
$[10+5]$
3. Using Lagrange's reduction Reduce the quadratic form
$x_{1}^{2}+4 x_{2}^{2}+x_{3}^{2}-4 x_{1} x_{2}+2 x_{1} x_{3}-4 x_{2} x_{3}$ to canonical form .Also find its nature, rank signature and the linear transformation.
[15]
4. (a) Find a real root of the equation $x^{3}-x-4=0$, using Regula - Falsi method.
(b) Find a real root of the equation $x e^{x}-\cos x=0$ using Newton-Raphson's method.
[8+7]
5. (a) If the interval of differencing is unity, prove the following: $\triangle\left\{\frac{1}{f(x)}\right\}=-\frac{\Delta f(x)}{f(x) f(x+1)}$
(b) Given that $\sin 45^{\circ}=0.7071, \sin 50^{\circ}=0.8192, \sin 60^{\circ}=0.8660$, find $\sin 48^{\circ}$.
6. (a) Given the following data of X and Y

X	1.0	1.2	1.4	1.6	1.8	2.0
Y	2.72	3.32	4.06	4.96	6.05	7.39

Find the first and second derivatives at $\mathrm{x}=1.0$
(b) The table below shows the temperature $\mathrm{f}(\mathrm{t})$ as a function of time

t	1	2	3	4	5	6	7
$\mathrm{f}(\mathrm{t})$	81	75	80	83	78	70	60

Use Simpson's $1 / 3$ method to estimate $\int_{1}^{7} f(t) d t$.
7. (a) Solve $y^{1}=x^{2} y-1, y(0)=1$ by Taylor series method and hence find y at $x=0.1$
(b) Solve $\mathrm{y}^{1}=\mathrm{y}, \mathrm{y}(0)=1$ by Picard's method and compare the solution with exact solution.
8. (a) Fit a curve of the type $\mathrm{y}=\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2}$ to the following data

x	10	15	20	25	30	35
y	35.3	32.4	29.2	26.1	23.2	20.5

(b) Fit a curve of the type $\mathrm{y}=\mathrm{ab}^{x}$ to the following data by the method of least squares

x	1	2	5	10	20	30	40	50
y	98.2	91.7	81.3	64	36.4	32.6	7.1	11.3

Set No. 3

I B.Tech I Semester Supplementary Examinations, Sept - 2014 MATHEMATICAL METHODS
(Common to Civil Engineering, Electrical \& Electronics Engineering, Computer Science \& Engineering, Electronics \& Instrumentation Engineering, Aeronautical Engineering, Bio-Technology and Automobile Engineering)
Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find rank of matrix using Echelon form $A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3\end{array}\right]$
(b) Solve the equations using Gauss Jordan method
$\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=8,2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+2 \mathrm{x}_{3}=19,4 \mathrm{x}_{1}+2 \mathrm{x}_{2}+3 \mathrm{x}_{3}=23$
2. Find Eigen vectors of $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$
3. (a) Find the nature of the quadratic form $2 x_{1}^{2}+3 x_{2}^{2}+4 x_{3}^{2}+2 x_{1} x_{2}$
(b) Reduce the following quadratic form to canonical form by Lagrange's reduction $2 x_{1}^{2}+7 x_{2}^{2}+5 x_{3}^{2}-8 x_{1} x_{2}-10 x_{2} x_{3}+4 x_{1} x_{3}$
4. (a) Find a root of the equation $x^{3}-4 x-9=0$ by Bisection method.
(b) Find the value of $\sqrt{35}$ by Newton-Raphson Method.
5. (a) Find y(1.6) using Newton's forward difference formula from the table

x	1	1.4	1.8	2.2
y	3.49	4.82	5.96	6.5

(b) Using Gauss's forward interpolation formula find y at $\mathrm{x}=1.7489$ given that

$\mathrm{x}:$	1.72	1.73	1.74	1.75	1.76	1.77	1.78
$\mathrm{y}:$	0.1791	0.1773	0.1775	0.1738	0.1720	0.1703	0.1686

6. (a) Find the value of $f^{\prime}(x)$ at $\mathrm{x}=0.01$ from the following table using Bessel's formula.

x	0.01	0.02	0.03	0.04	0.05	0.06
$\mathrm{f}(\mathrm{x})$	0.1023	0.1047	0.1071	0.1096	0.1122	0.1148

(b) Find the area bounded by the curve $y=e^{-\frac{x^{2}}{2}}, x-$ axis between $x=0$ and $\mathrm{x}=3$ by using Simpson's $3 / 8$ rule.
7. (a) Solve $y^{1}=x+y, y(1)=1$ by Picard's method hence find $y(0.1), y(0.2)$ and check your answer with exact solution
(b) Solve $\frac{d y}{d x}=\frac{2-y^{2}}{5 x}$ Find $\mathrm{y}(4.4)$ by modified Euler's method if $\mathrm{y}=1$ when $\mathrm{x}=4, \mathrm{~h}=0.20$

$$
[8+7]
$$

8. (a) Fit a curve of the type $\mathrm{y}=\mathrm{ab}^{x}$ to the following data by the method of least

	x	10	15	20	25	30	35
	y	35.3	32.4	29.2	26.1	23.2	20.5

(b) Fit a power curve $y=a x^{b}$ to the following data

x	1	2	3	4	5	6
y	2.98	4.26	5.21	6.1	6.8	7.5

Set No. 4

I B.Tech I Semester Supplementary Examinations, Sept - 2014 MATHEMATICAL METHODS
(Common to Civil Engineering, Electrical \& Electronics Engineering, Computer Science \& Engineering, Electronics \& Instrumentation Engineering, Aeronautical Engineering, Bio-Technology and Automobile Engineering)
Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find rank of a Matrix using Echelon form where $A=\left[\begin{array}{cccc}1 & -1 & 2 & 0 \\ 0 & 1 & 2 & 1 \\ 5 & 3 & 14 & 4\end{array}\right]$
(b) Show that equations $\mathrm{x}+\mathrm{y}+\mathrm{z}=6, \mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=14, \mathrm{x}+4 \mathrm{y}+7 \mathrm{z}=30$ are consistent and solve them

$$
[7+8]
$$

2. (a) Find Eigen Vectors of $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$
(b) The Eigen vectors corresponding to two different eigen values are linearly independent
$[10+5]$
3. Determine diagonal matrix orthogonally similar to the real symmetric Matrix $\mathbf{A}=\left[\begin{array}{ccc}3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3\end{array}\right]$.Also find the matrix of transformation.
4. (a) Find out square root of 25 given $\mathrm{x}_{0}=2, \mathrm{x}_{1}=7$ using Bisection method
(b) Solve the equation $x^{3}+2 x^{2}+10 x=20$ by iteration method
5. (a) Find the value of y from the following data at $\mathrm{x}=0.47$

$\mathrm{x}:$	0	1	2	3	4	5
$\mathrm{y}:$	1	2	4	7	11	16

(b) Use Lagrange's interpolation formula, find $\mathrm{f}(4)$ from the following data.

x	1	2	5	6	9
$y=f(x)$	2	8	17	20	35

6. (a) A rod is rotating in a plane. The following Table gives the angle θ (in radians) through which the rod has turned for various values of time t (in seconds).

$\mathrm{t}:$	0	0.2	0.4	0.6	0.8	1.0	1.2
$\theta:$	0	0.12	0.49	1.12	2.02	3.20	4.67

Find the angular velocity and angular acceleration of the rod at $\mathrm{t}=0.6$.
(b) Using the Simpson's Rule, evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by dividing the range (of integration) into 6 equal parts.

Set No. 4

7. (a) Solve $y^{1}=x^{2}+y^{2}$ subject to the condition $y(0)=0$ for $x=0.4$ by Taylor series method
(b) Solve $\mathrm{y}^{1}=1+\mathrm{xy}, \mathrm{y}(0)=1$ by Picard's method and hence find $\mathrm{y}(0.1), \mathrm{y}(0.2)[8+7]$
8. (a) Fit a least square parabola $y=a+b x+c x^{2}$ to the following data

x	1	2	3	4	5	15
y	2	3	5	8	10	20

(b) Fit a straight line of the form $\mathrm{y}=\mathrm{a}+\mathrm{bx}$ to the following data

x	50	60	70	80
y	205	225	248	274

